28,847 research outputs found

    Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei

    Full text link
    Capturing low-energy electron antineutrinos on radioactive Ho-163 nuclei, which decay into Dy-163 via electron capture (EC), is a noteworthy opportunity to detect relic sterile antineutrinos. Such hypothetical particles are more or less implied by current experimental and cosmological data, and they might be a part of hot dark matter or a candidate for warm dark matter in the Universe. Using the isotope Ho-163 as a target and assuming reasonable active-sterile antineutrino mixing angles, we calculate the capture rate of relic electron antineutrinos against the corresponding EC-decay background in the presence of sterile antineutrinos at the sub-eV or keV mass scale. We show that the signature of hot or warm sterile antineutrino dark matter should in principle be observable, provided the target is big enough and the energy resolution is good enough.Comment: 16 pages, 6 figures, more discussions and references added. To appear in JCA

    Multiple-Level Power Allocation Strategy for Secondary Users in Cognitive Radio Networks

    Get PDF
    In this paper, we propose a multiple-level power allocation strategy for the secondary user (SU) in cognitive radio (CR) networks. Different from the conventional strategies, where SU either stays silent or transmit with a constant/binary power depending on the busy/idle status of the primary user (PU), the proposed strategy allows SU to choose different power levels according to a carefully designed function of the receiving energy. The way of the power level selection is optimized to maximize the achievable rate of SU under the constraints of average transmit power at SU and average interference power at PU. Simulation results demonstrate that the proposed strategy can significantly improve the performance of SU compared to the conventional strategies.Comment: 12 page

    Volume integrals associated with the inhomegeneous Helmholtz equation. Part 2: Cylindrical region; rectangular region

    Get PDF
    Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) + alpha(2), for the cases of a finite cylindrical region and a region of rectangular parallelepiped. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r r' and r 4', where r and r' are distances from the origin to the point of observation and source, respectively. When the wave number approaches zero, the results reduce directly to the potentials of variable densities

    On the propagation of plane waves above an impedance surface

    Get PDF
    The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered

    Optimization of scale-free network for random failures

    Full text link
    It has been found that the networks with scale-free distribution are very resilient to random failures. The purpose of this work is to determine the network design guideline which maximize the network robustness to random failures with the average number of links per node of the network is constant. The optimal value of the distribution exponent and the minimum connectivity to different network size are given in this paper. Finally, the optimization strategy how to improve the evolving network robustness is given.Comment: 6 pages, 1 figur
    corecore